Supplementary Materials

General Materials and Methods. All spectral data were obtained on a Varian Unity-Plus spectrometer (¹H resonance frequency of 400 MHz), a Varian Unity-Plus spectrometer (¹H resonance frequency of 500 MHz), or a Varian INOVA spectrometer (¹H resonance frequency of 500 MHz) and samples internally referenced as indicated. Reagents and solvents were reagent grade and used as received unless otherwise noted. THF and benzene were distilled from sodium benzoquinone ketal before use, dichloromethane and acetonitrile were distilled from CaH₂ and methanol distilled from Mg shavings. TLC was performed on glass plates with fluorescent indicator (Merck Silica gel 60 F_{254}) and visualized using either of *p*-anisaldehyde, ceric ammonium sulfate-molybdate stain or ninhydrin. Normal phase flash chromatography following the method of Still and co-workers¹ was employed throughout.

1,3,4,6-tetra-*O*-acetyl-2-deoxy-2-methoxycarbonylamino- α,β -D-glucopyranoside (2). Methyl chloroformate (430 µL, 5.56 mmol) was added dropwise to a vigorously stirring solution of **1** (1.00 g, 4.64 mmol) and NaHCO₃ (1.17 g, 13.9 mmol) in a 1:1 mixture of CHCl₃:H₂O (20 mL). The reaction was allowed to stir for two hours at room temperature after which it was neutralized with 1M HCl and concentrated *in vacuo* to a white solid. The residue was dissolved in a solution dry pyridine (10 mL) and acetic anhydride (3.5 mL, 37.1 mmol) and allowed to stir under a nitrogen atmosphere at room temperature.

After twelve hours, the reaction was quenched with MeOH (5 mL) and the reaction concentrated *in vacuo*. The syrupy residue was dissolved in CH₂Cl₂ (100 mL) and washed consecutively with a 2:1 mixture of 10% ammonium sulfate: 10% HCl (3x), saturated NaHCO₃ (1x), and brine (1x) then dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by flash chromatography (1:1 ethyl acetate:hexanes) to afford **2** (1.87 g, 99%) as a white foam and a mixture of anomers. The purified anomeric mixture of **2** was used without further attempts to separate the anomers. HRFABMS calculated for C₁₆H₂₃NO₁₁Na (M+Na) 428.1169, found 428.1169.

3,4,6-tri-*O*-acetyl-2-deoxy-2-methoxycarbonylamino-*a*-D-glucopyranosyl

trichloroacetimidate (4). Hydrazine acetate (1.10 g, 11.9 mmol) was added to a vigorously stirring solution of 2 (3.45 g, 8.51 mmol) in dry DMF (20 mL) under dry nitrogen. After two hours the reaction was diluted with ethyl acetate (100 mL) and

washed consecutively with water (1x), saturated NaHCO₃ (1x), and brine (1x), then dried over Na₂SO₄ and concentrated *in vacuo*.

1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (675 µL, 4.5 mmol) was added to a flask containing the crude hemiacetal and trichloroacetonitrile (4.44 mL, 44.3 mmol) in dry CH₂Cl₂ (28 mL) at room temperature. After 2 hours the reaction was concentrated *in vacuo* and the residue purified by flash chromatography to afford **4** (2.49 g, 58%) as a light yellow foam. ¹H NMR (CDCl₃, 500 MHz) δ 8.80 (1H, s), 6.36 (1H, d, *J* = 3.7 Hz), 5.29 (1H, t, *J* = 9.9 Hz), 5.21 (1H, t, *J* = 9.9 Hz), 4.95 (1H, d, *J* = 9.4 Hz), 4.24 (2H, m), 4.10 (2H, m), 3.63 (3H, s), 2.05 (3H, s), 2.03 (3H, s), 2.02 (3H, s). ¹³C NMR (125 MHz, CDCl₃) δ 171.3, 170.7, 169.4, 160.4, 156.4, 95.0, 70.7, 70.3, 67.6, 61.6, 53.6, 52.7, 20.8, 20.7. HRFABMS calculated for C₁₆H₂₁Cl₃N₂O₁₀Na (M+Na) 529.0159, found 529.0160.

3,4,6-tri-*O***-acetyl-2-azido-2-deoxy-** α **-D-mannopyranosyl trichloroacetimidate** (7). Hydrazine acetate (177 mg, 1.92 mmol) was added to a solution of 1,3,4,6-tetra-*O*-acetyl-2-deoxy-2-azido- α -D-mannopyranoside² (512 mg, 1.37 mmol) in DMF (30 mL). After stirring at room temperature for 1 hour, the reaction was quenched with H₂O (20 mL), extracted with CHCl₃ (3x) and washed with saturated NaHCO₃ (1x). The aqueous layer was re-extracted with CHCl₃ (2x) and the organic extracts combined, then dried over MgSO₄. The filtrate was concentrated *in vacuo* to afford the crude hemiacetal as a light yellow syrup.

To a solution of the crude hemiacetal in CH₂Cl₂ (20 mL) were added trichloroacetonitrile (714 µl, 7.12 mmol) and DBU (109 µl, 0.73 mmol). After stirring at room temperature for 1 hour, the reaction was concentrated *in vacuo* and the residue purified by flash chromatography (1:1 hexanes: ethyl acetate) to afford the **7** as a light yellow foam (254 mg, 39 %): ¹H NMR (500 MHz, CDCl₃) δ 8.78 (1H, s), 6.27 (1H, d, *J* = 1.8 Hz), 5.42 (1H, t, *J* = 9.9 Hz), 5.41 (1H, m), 4.26 (1H, dd, *J* = 3.2, 2.0 Hz), 4.22 (1H, dd, *J* = 12.8, 4.9 Hz), 4.12 (1H, dd, *J* = 12.8, 2.4 Hz), 4.10 (1H, m), 2.09 (3H, s), 2.06 (3H, s), 2.04 (3H, s). ¹³C NMR (CDCl₃, 125 MHz) δ 170.8, 170.1, 169.6, 160.0, 95.5, 90.6, 71.4, 70.8, 65.3, 61.9, 60.0, 20.8, 20.8, 20.6; HRFABMS calculated for C₁₄H₁₇C₁₃N₄O₈ (M+Na) 497.009, found 497.008.

Methyl $O-3,4,6-tri-O-acetyl-2-deoxy-2-methoxycarbonylamino-\beta-D$ glucopyranoside (8a). A solution of 30% HBr in acetic acid (3.4 mL, 60.2 mmol) wasadded to a flask containing 2 (2.44 g, 6.02 mmol) and allowed to stir at roomtemperature. After one hour, the reaction was diluted with CH₂Cl₂ (200 mL) and washed with ice cold H_2O , saturated aqueous NaHCO₃ (1x), and brine (1x). The organic extract was dried over MgSO₄ and concentrated *in vacuo* to afford **3** (1.34 g, 52%) as a yellow foam. The crude glycosyl bromide immediately used without further purification.

Dry methanol (379 μ L, 93.6 mmol) was added to a solution of **3** (1.34 g, 31.2 mmol) and 4 Å molecular sieves (1.33 g) in dry CH₂Cl₂ (13 mL). The flask was excluded from light and a catalytic amount of AgOTf was added and the reaction allowed to stir at room temperature under dry nitrogen. After 36 hours, the reaction was filtered through Celite[®], concentrated in vacuo. The residue was purified by flash chromatography (1:1 ethyl acetate:hexanes) to afford **8a** (867 mg, 74%) as a white solid.

From **4**: TMSOTf (4 μL, 0.025 mmol) was added to a solution of **4** (124 mg, 0.245 mmol) in dry CH₂Cl₂ (1 mL) at -30 °C. After 10 minutes at -30 °C, dry MeOH (100 μL, 2.45 mmol) was added dropwise to the flask. The reaction was allowed to warm to room temperature over 3 hours then quenched with Et₃N and concentrated *in vacuo*. The residue was purified by flash chromatography (1:1 ethyl acetate:hexanes) to afford **8a** (839 mg, 91%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 5.24 (1H, bs), 5.05 (1H, d, *J* = 9.9 Hz), 4.79 (1H, bs), 4.51 (1H, bs), 4.27 (1H, dd, *J* = 12.2, 4.7 Hz), 4.13 (1H, dd, *J* = 12.3, 2.5 Hz), 3.68 (1H, ddd, *J* = 9.9, 4.8, 2.5 Hz), 3.66 (3H, s), 3.56 (1H, dt, *J* = 10.5, 8.7 Hz), 3.51 (3H, s), 2.08 (3H, s), 2.03 (3H, s), 2.01 (3H, s). ¹³C NMR (125 MHz, CDCl₃) δ 171.0, 170.9, 169.7, 156.7, 102.1, 72.5, 71.8, 69.0, 62.3, 57.3, 56.2, 52.6, 20.9, 20.8. mp 132-133 °C HRFABMS calculated for C₁₅H₂₃NO₁₀ (M+Na) 400.1220, found 400.1221.

O-3,4,6-tri-O-acetyl-2-amino-2-deoxy-β-D-glucopyranoside Methyl (**8b**). MeSiCl₃ (86 µL, 0.730 mmol) was added to a solution of 8a (55 mg, 0.146 mmol) and triethylamine (102 µL, 0.730 mmol) in dry THF (3 mL). The reaction flask was capped and heated to 60 °C. After 24 hours, the reaction was removed from the heating bath, diluted with H_2O (20 mL) and allowed to stir vigorously for 30 minutes and washed with CH₂Cl₂ (10 mL). The aqueous phase neutralized with saturated NaHCO₃ (5 mL) and extracted with CH₂Cl₂ (3x). The organic extracts were combined, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by flash chromatography (ethyl acetate, 1% Et₃N) to afford **8b** (44 mg, 93%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 5.00 (1H, t, J = 9.5 Hz), 4.95 (1H, t, J = 9.5 Hz), 4.28 (dd, J = 12.3, 4.5 Hz), 4.14 (1H, d, J = 12.3, 4.5 Hz), 4.14 (1H, d,8.1 Hz), 4.09 (1H, dd, J = 12.3, 2.3 Hz), 3.67 (1H, ddd, J = 9.5, 4.7, 2.4 Hz), 3.54 (3H, s), 2.89 (1H, dd, J = 9.8, 8.1 Hz), 2.06 (3H, s), 2.05 (3H, s), 2.00 (3H, s), 1.44 (2H, bs). ¹³C NMR (125 MHz, CDCl₃) δ 170.9, 170.8, 169.9, 105.2, 75.5, 72.0, 68.9, 62.4, 57.6, 56.1, 21.0, 20.9, 20.8. HRFABMS calculated for C₁₃H₂₁NO₈ (M+Na) 954.2273, found 954.2270.

Methyl 2-acetamido-3,4,6-tri-*O*-acetyl-2-deoxy-β-D-glucopyranoside (8c). Acetic anhydride (26 μL, 0.272 mmol) was added to a solution of **8b** (44 mg, 0.136 mmol) in dry pyridine (1 mL) at room temperature. After two hours, MeOH (0.5 mL) was added and the reaction concentrated *in vacuo*. The residue was purified by flash chromatography (ethyl acetate) to afford **8c** (mg, %) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 5.83 (1H, bd, J = 9.0 Hz), 5.26 (1H, dd, J = 10.5, 9.1 Hz), 5.05 (1H, t, J = 9.9 Hz), 4.57 (1H, d, J = 8.2 Hz), 4.25 (1H, dd, J = 12.2, 4.6 Hz), 4.12 (1H, dd, J = 12.4, 2.4 Hz), 3.86 (1H, dt, J = 10.6, 8.5 Hz), 3.70 (1H, ddd, J = 9.9, 4.6, 2.4 Hz), 3.47 (3H, s), 2.06 (3H, s), 2.01 (3H, s), 2.00 (3H, s), 1.93 (3H, s). ¹³C NMR (125 MHz, CDCl₃) δ 171.1, 170.9, 170.6, 169.6, 101.8, 68.8, 62.3, 56.9, 54.7, 23.5, 20.9, 20.8, 20.7. mp 153-155 °C HRFABMS calculated for C₁₅H₂₃NO₉Na (M+Na) 384.1271, found 384.1273.

Isopropyl 3,4,6-tri-*O***-acetyl-2-deoxy-2-methoxycarbonylamino-\beta-Dglucopyranoside (9a). A solution of 30% HBr in acetic acid (3.5 mL, 58.5 mmol) was added to a flask containing 4** (2.50 g, 5.85 mmol) and allowed to stir at room temperature. After one hour, the reaction was diluted with CH₂Cl₂ (200 mL) and washed with ice cold H₂O, saturated aqueous NaHCO₃ (1x), and brine (1x). The organic extract was dried over MgSO₄ and concentrated *in vacuo* to afford **3** (1.28 g, 51%) as a yellow foam. The crude glycosyl bromide immediately used without further purification.

Dry isopropanol (690 µL, 90.0 mmol) was added to a solution of **3** (1.28 g, 30.0 mmol) and 4 Å molecular sieves (1.28 g) in dry CH₂Cl₂ (13 mL). The flask was excluded from light and a catalytic amount of AgOTf was added and the reaction allowed to stir at room temperature under dry nitrogen. After 36 hours, the reaction was filtered through Celite[®], concentrated in vacuo. The residue was purified by flash chromatography (1:1 ethyl acetate:hexanes) to afford **9a** (912 mg, 75%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 5.24 (1H, bs), 5.05 (1H, d, *J* = 9.9 Hz), 4.79 (1H, bs), 4.51 (1H, bs), 4.27 (1H, dd, *J* = 12.2, 4.7 Hz), 4.13 (1H, dd, *J* = 12.3, 2.5 Hz), 3.68 (1H, ddd, *J* = 9.9, 4.8, 2.5 Hz), 3.66 (3H, s), 3.56 (1H, dt, *J* = 10.5, 8.7 Hz), 3.51 (3H, s), 2.08 (3H, s), 2.03 (3H, s), 2.01 (3H, s). ¹³C NMR (125 MHz, CDCl₃) δ 171.0, 170.9, 169.7, 156.7, 102.1, 72.5, 71.8, 69.0, 62.3, 57.3, 56.2, 52.6, 20.9, 20.8. mp 165-169 °C HRFABMS calculated for C₁₇H₂₇NO₁₀ (M+Na) 428.1533, found 428.1534.

Isopropyl 3,4,6-tri-O-acetyl-2-amino-2-deoxy-*B*-D-glucopyranoside (9b). MeSiCl₃ (60 µL, 0.559 mmol) was added to a solution of **9a** (45 mg, 0.112 mmol) and triethylamine (78 µL, 0.559 mmol) in dry THF (11 mL). The reaction flask was capped and heated to 60 °C. After 24 hours, the reaction was removed from the heating bath, diluted with H₂O (30 mL) and allowed to stir vigorously for 30 minutes and washed with CH₂Cl₂ (10 mL). The aqueous phase neutralized with saturated NaHCO₃ (5 mL) and extracted with CH₂Cl₂ (3x). The organic extracts were combined, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash chromatography (ethyl acetate, 1% Et₃N) to afford **9b** as a white solid (31 mg, 80%). ¹H NMR (500 MHz, CDCl₃) δ 4.98 (2H, m, J = 10.0, 9.4, 8.0 Hz), 4.31 (1H, d, J = 8.1 Hz), 4.25 (1H, <u>ABX</u>, J_{AB} = 12.1 Hz) $J_{AX} = 5.2$ Hz, $J_{BX} = 2.6$ Hz, $v_a = 2125.8$, $v_b = 2043.3$), 4.09 (1H, A<u>B</u>X, $J_{AB} = 12.1$ Hz, $J_{AX} = 5.2 \text{ Hz}, J_{BX} = 2.6 \text{ Hz}, v_a = 2125.8, v_b = 2043.3), 3.98 (1H, \text{ sept}, J = 6.1 \text{ Hz}), 3.66$ (1H, ABX, $v_x = 1831.8$), 2.89 (1H, m, J = 10.0, 8.1 Hz), 2.06 (3H, s), 2.00 (3H, s), 1.62 (2H, bs), 1.25 (3H, d, J = 5.9 Hz), 1.19 (3H, d, J = 6.3 Hz) ¹³C NMR (125 MHz, CDCl₃) δ 171.0, 170.9, 102.6, 75.6, 72.7, 71.9, 69.2, 52.6, 56.0, 23.6, 22.1, 21.0, 20.9. HRFABMS calculated for C₁₅H₂₆NO₈ (M+H) 348.1658, found 348.1659.

Isopropyl 2-acetamido-3,4,6-tri-*O*-acetyl-2-deoxy-β-D-glucopyranoside (9c). Acetic anhydride (20 μL, 0.177 mmol) was added to a solution of **9b** (31 mg, 0.088 mmol) in dry pyridine (1 mL) at room temperature. After two hours, MeOH (0.5 mL) was added and the reaction concentrated *in vacuo*. The residue was purified by flash chromatography (ethyl acetate) to afford **9c** (34 mg, quantitative) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 5.82 (1H, bd, J = 8.5 Hz), 5.38 (1H, dd, J = 10.6, 9.3 Hz), 5.01 (1H, t, J = 9.9 Hz), 4.82 (1H, d, J = 8.2 Hz), 4.23 (1H, dd, J = 12.4, 5.4 Hz), 4.09 (1H, dd, J = 12.1, 2.5 Hz), 3.91 (1H, sept, J = 6.2 Hz), 3.70 (1H, ddd, J = 10.0, 5.3, 2.5 Hz), 3.65 (1H, dt, J = 10.5, 8.4 Hz), 2.05 (3H, s), 2.01 (3H, s), 2.00 (3H, s), 1.92 (3H, s), 1.20 (3H, d, J = 6.4 Hz), 1.11 (3H, d, J = 6.1 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 171.0, 170.5, 169.7, 99.4, 72.8, 72.4, 71.7, 69.2, 62.6, 55.6, 23.4, 22.1, 20.9, 20.8, 20.7. mp 168-169 °C HRFABMS calculated for C₁₇H₂₇NO₉Na (M+Na) 412.1584, found 412.1583.

Ethyl 3,4,6-tri-*O*-acetyl-2-deoxy-2-methoxycarbonylamino-1-thio- β -D-glucopyranoside (10a). BF₃•Et₂O (50 µl, 3.7 mmol) was added to a solution of 4 (190 mg, 0.37 mmol), ethanethiol (277 µl, 3.7 mmol), and 4 Å molecular sieves in dry CH₂Cl₂

(10 mL).³ After stirring at room temperature for 8 hours, the reaction was quenched with saturated NaHCO₃ and extracted with CH₂Cl₂ (3x), dried over MgSO₄, concentrated *in vacuo* and purified by flash chromatography (33 % hexane in ethyl acetate) to afford **10a** (110 mg, 73 %) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 5.19 (1H, bt, *J* = 9.5 Hz), 5.06 (1H, t, *J* = 9.9 Hz), 4.83 (1H, bd, *J* = 8.9 Hz), 4.62 (1H, bd, *J* = 9.5 Hz), 4.23 (1H, <u>ABX</u>, *J*_{AB} = 12.4 Hz, *J*_{AX} = 5.1 Hz, *J*_{BX} = 2.3 Hz, v_a = 1693.0, v_b = 1647.0), 4.12 (1H, A<u>BX</u>, as above), 3.72 (1H, q, *J* = 9.9 Hz), 3.69 (1H, AB<u>X</u>, v_x = 1477.0), 3.67 (3H, s), 2.72 (2H, m), 2.07 (3H, s), 2.03 (3H, s), 2.02 (3H, s), 1.27 (3H, t, *J* = 7.4 Hz). ¹³C NMR (CDCl₃, 100 MHz) δ 170.9, 169.6, 156.5, 76.0, 73.7, 68.8, 62.6, 52.8, 24.7, 21.0, 20.9, 20.8, 15.0. mp 161-162 °C HRFABMS calculated for C₁₆H₂₅NO₉S (M+Na) 430.1147, found 430.1148.

Ethyl 3,4,6-tri-*O***-acetyl-2-amino-2-deoxy-1-thio-β-D-glucopyranoside (10b). MeSiCl₃ (27 μl, 0.23 mmol) was added to a solution of 10a** (19 mg, 0.05 mmol) and Et₃N (32 μl, 0.23 mmol) in dry THF (1 mL) at 60 °C. After stirring for 48 hours, the reaction was quenched with H₂O (20 mL) and extracted with CH₂Cl₂ (3x). The aqueous layer was neutralized with saturated NaHCO₃ and extracted with CH₂Cl₂ (3x), dried over Na₂SO₄, concentrated *in vacuo*. The residue was purified by flash chromatography (1 % Et₃N in ethyl acetate) to afford **10b** (11 mg, 68 %) as a white foam. ¹H NMR (CDCl₃, 500 MHz) δ 5.01 (1H, t, *J* = 9.5 Hz), 4.96 (1H, t, *J* = 9.4 Hz), 4.33 (1H, d, *J* = 9.9 Hz), 4.24 (1H, <u>ABX</u>, as above), 3.68 (1H, AB<u>X</u>, v_x = 1840.8), 2.94 (1H, t, *J* = 9.5 Hz), 2.73 (2H, m), 2.07 (3H, s), 2.06 (3H, s), 2.01 (3H, s), 1.61 (2H, bs), 1.31 (3H, t, *J* = 7.4 Hz). ¹³C NMR (CDCl₃, 125 MHz) δ 170.9, 170.0, 87.8, 76.9, 75.9, 68.9, 62.7, 55.4, 24.9, 21.0, 20.9, 20.8, 15.3. HRFABMS calculated for C₁₄H₂₃NO₇S (M+H) 350.1272, found 350.1273.

Ethyl 2-acetamido-3,4,6-tri-*O*-acetyl-2-deoxy-1-thio-β-D-glucopyranoside (10c). Acetic anhydride (94 μl, 1.0 mmol) was added to a solution of 10b (34 mg, 0.1 mmol) in dry pyridine (1 mL). After stirring at room temperature for 12 hours, the reaction was evaporated under reduced pressure and purified by flash chromatography (ethyl acetate) to afford 10c (36 mg, 95 %) as a white solid. ¹H NMR (CDCl₃, 500 MHz) δ 5.61 (1H, d, J = 9.4 Hz), 5.17 (1H, t, J = 9.7 Hz), 5.08 (1H, t, J = 9.7 Hz), 4.593 (1H, d, J = 10.0 Hz), 4.22 (1H, <u>A</u>BX, J_{AB} = 12.4 Hz, J_{AX} = 5.1 Hz, J_{BX} = 2.3 Hz, v_a = 2112.3, v_b = 2063.3), 4.13 (1H, A<u>B</u>X, as above), 4.09 (1H, q, J = 9.7 Hz), 3.67 (1H, AB<u>X</u>, v_x = 1840.8), 2.71 (2H, m) 2.07 (3H, s), 2.03 (3H, s), 2.02 (3H, s), 1.95 (3H, s), 1.26 (3H, t, J = 7.0 Hz). ¹³C NMR (CDCl₃, 125 MHz) δ171.3, 171.0, 170.3, 169.6, 84.6, 76.1, 74.1,

68.6, 62.5, 53.4, 24.4, 23.5, 20.9, 20.9, 20.8, 14.9. mp 178-179 °C HRFABMS calculated for C₁₆H₂₅NO₈S (M+Na) 414.1198, found 414.1199.

3,4,6-tri-O-acetyl-2-deoxy-2-methoxycarbonylamino- β -D-Methyl glucopyranosyl- $(1 \rightarrow 6)$ -2,3-di-O-benzyl-4-O-(4-methoxybenzyl)- β -D-glucopyranoside (11a). TMSOTf (6 mL, 0.035 mmol) was added to a solution of 4 (356 mg, 0.701 mmol), 18⁴ (231 mg, 0.0467 mmol) and 4 Å molecular sieves in dry CH₂Cl₂ (4 mL) at -30 °C under argon. The reaction was allowed to warm to 0 °C over 2 hours then quenched with Et3N, filtered through Celite[®], and concentrated in vacuo. The residue was purified by flash chromatography (1:1 ethyl acetate:hexanes) to afford **11a** (537 mg, 91%) as a white solid. ¹H NMR (CDCl₃:CH₃CN (2:1), 500 MHz) δ7.18-7.05 (10H, m), 7.05 (2H AA'XX', $J_{AX} = J_{A'X'} = 8.4$ Hz, $J_{AA'} = J_{X'X'} = 2.2$ Hz, $J_{A'X} = J_{AX'} = 0.3$ Hz, $v_a = 3504.8$, v_b = 3329.5), 6.66 (2H AA'XX', $J_{AX} = J_{A'X'} = 8.4$ Hz, $J_{AA'} = J_{X'X'} = 2.2$ Hz, $J_{A'X} = J_{AX'} = 3.4$ Hz, $J_{AA'} = J_{X'X'} = 2.2$ Hz, $J_{A'X} = J_{AX'} = 3.4$ Hz, $J_{AA'} = J_{AX'} = 3.4$ Hz, $J_{AA'} = J_{A'X} = 3.4$ Hz, $J_{AA'} = 3.4$ Hz, J_{A 0.3 Hz, $v_a = 3504.8$, $v_b = 3329.5$), 5.30 (1H, bs), 5.01 (1H, bt, J = 9.0 Hz), 4.81 (1H, t, J = 9.5 Hz), 4.70 (1H, AB_q, J_{AB} = 11.1 Hz, v_a = 2325.7 Hz, v_b = 2314.6 Hz), 4.69 (1H, AB_q , $J_{AB} = 11.1$ Hz, $v_a = 2303.8$ Hz, $v_b = 2297.7$ Hz), 4.58 (1H, AB_q , $J_{AB} = 11.1$ Hz, $v_a = 11.1$ Hz, v2325.7 Hz, $v_b = 2314.6$ Hz), 4.50 (1H, AB_q, $J_{AB} = 11.1$ Hz, $v_a = 2303.8$ Hz, $v_b = 2297.7$ Hz), 4.49 (1H, AB_q, $J_{AB} = 9.2$ Hz, $v_a = 2205.3$ Hz, $v_b = 2195.5$ Hz), 4.48 (1H, bs), 4.30 (1H, AB_q , $J_{AB} = 9.2$ Hz, $v_a = 2205.3$ Hz, $v_b = 2195.5$ Hz), 4.10 (1H, d, J = 7.8 Hz), 4.08 (1H, dd, *J* = 12.3, 4.7 Hz), 3.94 (1H, dd, *J* = 8.5, 1.8 Hz), 3.91 (1H, dd, *J* = 9.8, 2.4 Hz), 3.59 (3H, s), 3.54-3.49 (2H, m), 3.41 (1H, m), 3.40 (1H, t, J = 8.9 Hz), 3.35 (3H, s), 3.31 (3H, bs), 3.29 (1H, t, J = 8.6 Hz), 3.24 (1H, ddd, J = 9.7, 4.4, 1.7 Hz), 3.13 (1H, dd, J = 9.1, 8.0 Hz), 1.85 (3H, s), 1.82 (3H, s), 1.81 (3H, s). ¹³C NMR (CDCl₃:CH₃CN (2:1), 125 MHz) δ 172.2, 172.0, 171.3, 161.0, 158.2, 140.5, 140.4, 132.2, 131.3, 130.0, 129.7, 129.4, 129.3, 129.2, 115.4, 106.3, 86.2, 83.8, 79.0, 77.0, 76.1, 76.0, 75.5, 73.9, 73.3, 70.6, 69.9, 63.8, 58.6, 57.6, 56.9, 53.7, 22.3, 22.2. HRFABMS calculated for C₄₃H₅₃NO₁₆Na (M+Na) 862.3262, found 862.3258.

Methyl 3,4,6-tri-*O*-acetyl-2-amino-2-deoxy- β -D-glucopyranosyl-(1 \rightarrow 6)-2,3-di-*O*-benzyl-4-*O*-(4-methoxybenzyl)- β -D-glucopyranoside (11b). MeSiCl₃ (32 µl, 0.273 mmol) was added to a solution of 11a (46 mg, 0.055 mmol) and Et₃N (38 µl, 0.273 mmol) in dry THF (2.8 mL). The flask was capped and heated to 60 °C. After 36 hours, the reaction was quenched with THF (10 mL) and H₂O (10 mL) and extracted with

 CH_2Cl_2 (3x). The aqueous layer was neutralized with saturated NaHCO₃, extracted with CH₂Cl₂ (3x), dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by flash chromatography (3:2 ethyl acetate:hexanes, 1 % Et₃N) to afford **11b** (23 mg, 54 %) as a transparent syrup. ¹H NMR (CDCl₃, 500 MHz) δ 7.33-7.26 (10H, m), 7.18 (2H, AA'XX', $J_{AX} = J_{A'X'} = 8.4$ Hz, $J_{AA'} = J_{X'X'} = 2.2$ Hz, $J_{A'X} = J_{AX'} = 0.3$ Hz, $v_a = 3591.4$, $v_b = 359$ = 3425.5) 6.85 (2H AA'XX', $J_{AX} = J_{A'X'} = 8.4$ Hz, $J_{AA'} = J_{X'X'} = 2.2$ Hz, $J_{A'X} = J_{AX'} = 0.3$ Hz, $v_a = 3591.4$, $v_b = 3425.5$) 5.01 (1H, t, J = 9.6 Hz), 4.94 (1H, t, J = 10.0 Hz) 4.93 (1H, AB_q , $J_{AB} = 11.1 Hz$, $v_a = 2436.1 Hz$, $v_b = 2425.1 Hz$), 4.90 (1H, AB_q , $J_{AB} = 11.1 Hz$, $v_a = 11.1 Hz$, v2406.9 Hz, $v_b = 2395.8$ Hz), 4.79 (1H, AB_q, $J_{AB} = 10.5$ Hz, $v_a = 2331.8$ Hz, $v_b = 2321.1$ Hz), 4.78 (1H, AB_a, $J_{AB} = 11.1$ Hz, $v_a = 2436.1$ Hz, $v_b = 2425.1$ Hz), 4.69 (1H, AB_a, J_{AB} = 11.1 Hz, ν_a = 2406.9 Hz, ν_b = 2395.8 Hz), 4.51(1H, AB_q, J_{AB} = 10.5 Hz, ν_a = 2331.8 Hz, $v_{\rm b} = 2321.1$ Hz), 4.30 (1H, d, J = 7.9 Hz), 4.27 (1H, dd, J = 7.7, 4.8 Hz), 4.26 (1H, d, J = 7.9 Hz), 4.15 (1H, dd, J = 11.2, 2.1 Hz), 4.11 (1H, dd, 12.2, 2.3 Hz), 3.80 (3H, s), 3.66-3.61 (3H, m), 3.56 (3H, s), 3.53 (1H, ddd, J = 9.9, 6.7, 1.9 Hz), 3.40 (1H, t, J = 10.1 Hz), 2.95 (1H, dd, *J* = 10.1, 8.0 Hz), 2.01 (3H, s), 2.06 (3H, s), 2.02 (3H, s), 1.5 (2H, bs). 13 C NMR (CDCl₃, 125 MHz) δ 171.5, 170.9, 159.6, 138.7, 138.6, 130.3, 129.9, 128.7, 128.6, 128.3, 128.1, 127.9, 114.1, 104.9, 104.8, 84.8, 82.5, 78.1, 76.0, 75.6, 75.0, 74.9, 74.8, 72.1, 69.4, 69.0, 62.5, 57.6, 56.0, 21.1, 20.9. HRFABMS calculated for C₄₁H₅₁NO₁₄Na (M+Na) 804.3207, found 804.3205.

2-acetamido-3,4,6-tri-O-acetyl-2-deoxy- β -D-glucopyranosyl-(1 \rightarrow 6)-Methyl 2,3-di-O-benzyl-4-O-(4-methoxybenzyl)-B-D-glucopyranoside (11c). Acetic anhydride (5 mL, 0.055 mmol) was added to a solution of 11b (22 mg, 0.028 mmol) in 1:1 CH_2Cl_2 :pyridine (0.5 mL). The reaction was stirred at room temperature of 1 hour then quenched with methanol and concentrated in vacuo. The residue was purified by flash chromatography (3:2 ethyl acetate:hexanes) to afford 11c (23 mg, 99%) as a white solid. ¹H NMR (CDCl₃, 500 MHz) δ 7.34-7.26 (10H, m), 7.18 (2H, AA'XX', $J_{AX} = J_{A'X'} = 8.4$ Hz, $J_{AA'} = J_{X'X'} = 2.2$ Hz, $J_{A'X} = J_{AX'} = 0.3$ Hz, $v_a = 3591.4$, $v_b = 3422.6$) 6.84 (2H AA'XX', $J_{AX} = J_{A'X'} = 8.4$ Hz, $J_{AA'} = J_{X'X'} = 2.2$ Hz, $J_{A'X} = J_{AX'} = 0.3$ Hz, $v_a = 3591.4$, v_b = 3422.6), 5.51 (1H, d, J = 8.9 Hz), 5.29 (1H, dd, J = 10.3, 9.1 Hz), 5.07 (1H, t, J = 9.7 Hz), 4.91 (1H, AB_q, $J_{AB} = 11.3$ Hz, $v_a = 2626.0$ Hz, $v_b = 2416.3$ Hz), 4.89 (1H, AB_q, J_{AB} = 11.3 Hz, v_a = 2400.1 Hz, v_b = 2389.0 Hz), 4.78 (1H, AB_q, J_{AB} = 11.3 Hz, v_a = 2626.0 Hz, $v_b = 2416.3$ Hz), 4.77 (1H, d, J = 7.6 Hz), 4.74 (1H, AB_q, $J_{AB} = 10.4$ Hz, $v_a = 2316.6$ Hz, $v_b = 2306.2$ Hz), 4.68 (1H, AB_q, $J_{AB} = 11.3$ Hz, $v_a = 2400.1$ Hz, $v_b = 2389.0$ Hz), 4.50 (1H, AB_a, $J_{AB} = 10.4$ Hz, $v_a = 2316.6$ Hz, $v_b = 2306.2$ Hz), 4.28 (1H, d, J = 7.6 Hz), 4.24 (1H, dd, *J* = 12.4, 4.8 Hz), 4.11 (1H, dd, *J* = 12.3, 2.4 Hz), 4.09 (1H, dd, *J* = 11.0, 1.8 Hz), 3.87 (1H, dt, J = 10.6, 8.5 Hz), 3.79 (3H, s), 3.70-3.66 (2H, m), 3.61 (1H, ddd, J = 9.8, 5.3, 2.0 Hz), 3.41 (1H, dd, *J* = 9.2, 7.8 Hz), 2.03 (3H, s), 2.01, (3H,s), 1.87 (3H, s). ¹³C NMR (CDCl₃, 125 MHz) δ 171.0, 170.9, 170.2, 159.6, 138.7, 138.6, 130.3, 129.8, 128.6, 128.5, 128.3, 128.0, 127.9, 127.8, 114.1, 104.7, 100.6, 84.7, 82.3, 77.8, 75.9, 74.9, 74.7, 74.4, 72.6, 72.1, 68.7, 67.7, 62.3, 57.3, 55.5, 54.7, 23.5, 20.9, 20.8. HRFABMS calculated for $C_{43}H_{53}NO_{15}$ (M+Na) 846.3313, found 846.3315.

Methyl [(2'R,3'R)-2,3-O-(2',3'-dimethoxybutane-2',3'-diyl)]-β-Dglucopyranoside (23).⁵ D,L-Camphorsulfonic acid (85 mg, 0.4 mmol) was added to a solution of methyl-β-D-glucopyranoside hemihydrate (1.9 g, 9.5 mmol), trimethylorthoformate (3.0 mL, 27.7 mmol), and tetramethoxybutane (2.0 mL, 11.5 mmol) in dry MeOH (25 mL). After 19 hours of refluxing at 60 °C, TLC indicated the absence of starting material and the reaction was quenched by the addition of solid NaHCO₃. The reaction was filtered, concentrated *in vacuo*, and purified by flash chromatography (32 % ethyl acetate, 32 % Et₂O, 32 % THF, 5 % Et₃N) to afford **23** (1.21 g, 41 %) as a white foam. ¹H NMR (CDCl₃, 500 MHz) δ 4.46 (1H, d, *J* = 7.9 Hz), 3.89 (1H, <u>ABX</u>, *J*_{AB} = 12.0 Hz, *J*_{AX} = 3.4 Hz, *J*_{BX} = 4.7 Hz, v_a = 1944.3, v_b = 1904.9), 3.81 (1H, <u>ABX</u>, as above), 3.74 (1H, t, *J* = 9.3 Hz), 3.69 (1H, t, *J* = 9.5 Hz), 3.53 (3H, s), 3.47 (1H, dd, *J* = 9.8, 8.0 Hz), 3.40 (1H, AB<u>X</u>, v_x = 1699.0), 3.28 (3H, s), 3.27 (3H, s), 1.32 (6H, s). ¹³C NMR (CDCl₃, 125 MHz) δ 101.8, 99.7, 76.3, 72.6, 69.4, 68.0, 62.4, 57.2, 48.2, 48.2, 17.8, 17.8. HRFABMS calculated for C₁₈H₂₄O₈ (M+Na) 331.1370, found 331.1369.

Methyl [(2'R,3'R)-2,3-*O*-(2',3'-dimethoxybutane-2',3'-diyl)-(6-*O*-tertbutyldimethyl silyl]-β-D-glucopyranoside (19). To a solution of 23 (100 mg, 0.3 mmol) in pyridine (5 mL) was added *t*-butyldimethylsilylchloride (54 mg, 0.4 mmol). After stirring at room temperature for 2 hours, TLC indicated the absence of starting material. CH₂Cl₂ (15 mL) was added and the reaction was washed with saturated CuSO₄ (3x), water (1x), dried over MgSO₄, and concentrated *in vacuo*. The residue was purified by flash chromatography to afford 19 (130 mg, 95 %) as a white foam. ¹H NMR (CDCl₃, 500 MHz) δ 4.33 (1H, d, *J* = 8.1 Hz), 3.83 (1H, <u>A</u>BX, *J*_{AB} = 10.4 Hz, *J*_{AX} = 5.2 Hz, *J*_{BX} = 6.0 Hz, v_a = 1915.8, v_b = 1872.3), 3.74 (1H, A<u>B</u>X, as above), 3.63 (2H, m), 3.42 (3H, s), 3.39 (1H, dd, *J* = 10.1, 8.1 Hz), 3.31 (1H, AB<u>X</u>, v_x = 1655.2), 3.22 (3H, s), 3.18 (3H, s), 1.25 (3H, s), 1.24 (3H, s), 0.80 (9H, s), 0.00 (3H, s), -0.01 (3H, s). ¹³C NMR (CDCl₃, 125 MHz) δ 101.6, 99.7, 99.6, 75.1, 72.6, 70.4, 69.3, 64.9, 56.9, 48.2, 48.1, 26.0, 17.9, 17.8, -5.3. HRFABMS calculated for C₁₉H₃₈O₈Si (M + Na) 445.2235, found 445.2234.

Methyl 3,4,6-tri-O-acetyl-2-deoxy-2-methoxycarbonylamino- β -Dglucopyranosyl- $(1 \rightarrow 4)$ -[(2'R,3'R)-2,3-O-(2',3'-dimethoxybutane-2',3'-diyl)-(6-O-tertbutyldimethyl silyl]-β-D-glucopyranoside (20). To a solution of 4 (830 mg, 1.6 mmol), 4 Å molecular sieves, and trimethylsilyl trifluoromethanesulfonate (10 μ l, 0.05 mmol) in CH₂Cl₂ (5 mL) at 0 °C was added **19** (460 mg, 1.1 mmol) in CH₂Cl₂ (2.5 mL) dropwise After warming to room temperature over 18 hours, the reaction was via cannula. quenched with Et₃N (10 µl) and filtered through Celite[®] and concentrated *in vacuo*. The residue was purified by flash chromatography (33 % hexane in ethyl acetate) to afford 20 (790 mg, 94 %) as a light yellow foam. ¹H NMR (500 MHz, CDCl₃) δ ¹H NMR (CDCl₃, 500 MHz) δ 5.00 (2H, m), 4.55 (1H, d, J = 8.4 Hz), 4.25 (1H, d, J = 8.0 Hz), 4.20 (1H, <u>ABX</u>, $J_{AB} = 12.4$ Hz, $J_{AX} = 3.4$ Hz, $J_{BX} = 2.5$ Hz, $v_a = 2099.8$, $v_b = 2010.8$), 4.02 (ABX, 1H, as above), 3.76 (1H, <u>ABX</u>, $J_{AB} = 12.0$ Hz, $J_{AX} = 1.3$ Hz, $J_{BX} = 4.5$ Hz, $v_a = 1881.3$, $v_{\rm h}$ = 1832.8), 3.72 (1H, t, J = 9.8 Hz), 3.67 (1H, A<u>B</u>X, as above), 3.62 (1H, t, J = 9.5 Hz), 3.56 (1H, m), 3.55 (3H, s), 3.53 (1H, ABX, $v_x = 1765.3$), 3.39 (3H, s), 3.36 (1H, dd, J =9.9, 7.9 Hz), 3.23 (1H, ABX, $v_x = 1615.2$), 3.21 (3H, s), 3.18 (3H, s), 1.96 (3H, s), 1.92 (3H, s), 1.91 (3H, s), 1.218 (3H, s), 1.91 (3H, s), 0.81 (9H, s), -0.01 (3H, s), -0.02 (3H, s). ¹³C NMR (CDCl₃, 125 MHz) δ 170.9, 156.7, 102.1, 101.2, 99.7, 99.6, 76.2, 73.3, 71.9, 71.5, 70.4, 69.9, 68.3, 62.2, 62.0, 56.7, 56.6, 52.6, 48.2, 48.2, 26.1, 20.8, 20.7, 17.8, 17.7, -5.1. HRFABMS calculated for C₃₃H₅₇NO₁₇Si (M+Na) 790.3294, found 790.3293.

Methyl 3,4,6-tri-*O*-acetyl-2-deoxy-2-methoxycarbonylamino-β-Dglucopyranosyl-(1→4)-(2'R,3'R)-2,3-*O*-(2',3'-dimethoxybutane-2',3'-diyl)-β-Dglucopyranoside (24). TBAF (1.2 mL, 1M solution in THF, 1.2 mmol) was added to a solution of 20 (231 mg, 0.3 mmol) in dry THF (2 mL) at 0 °C. After warming to room temperature over 12 hours, the reaction was diluted with CH₂Cl₂ and washed with saturated NaHCO₃ (1x), brine (1x), dried over MgSO₄, and concentrated *in vacuo*. The residue was purified by flash chromatography (20 % hexane in ethyl acetate) to afford 24 (144 mg, 74 %) as a transparent syrup. ¹H NMR (CDCl₃, 500 MHz) δ 5.63 (1H, d, *J* = 9.3 Hz), 5.21 (1H, bt, *J* = 10.4 Hz), 5.05 (1H, t, *J* = 9.8 Hz), 4.77 (1H, bd, *J* = 8.4 Hz), 4.37 (1H, d, *J* = 8.0 Hz), 4.28 (1H, <u>A</u>BX, *J*_{AB} = 12.4 Hz, *J*_{AX} = 3.4 Hz, *J*_{BX} = 2.4 Hz, v_a = 2141.3, v_b = 2036.3), 4.07 (1H, A<u>B</u>X, as above), 3.81 (1H, t, *J* = 10.4 Hz), 3.80 (1H, t, *J* = 9.5 Hz), 3.77 (1H, <u>A</u>BX, *J*_{AB} = 12.2 Hz, *J*_{AX} = 1.6 Hz, *J*_{BX} = 3.2 Hz, v_a = 1884.3, v_b = 1863.8), 3.73 (1H, A<u>B</u>X, as above), 3.65 (1H, m), 3.64 (3H, s), 3.62 (1H, d), 3.48 (3H, s), 3.44 (1H, dd, *J* = 9.6, 8.1 Hz), 3.34 (1H, AB<u>X</u>, v_x = 1671.3), 3.29 (3H, s), 3.23 (3H, s), 2.03 (3H, s), 2.00 (3H, s), 1.98 (3H, s), 1.28 (3H, s), 1.25 (3H, s). 13 C NMR (CDCl₃, 125 MHz) δ 170.8, 169.6, 156.8, 101.8, 101.4, 99.6, 99.5, 75.7, 75.3, 72.8, 71.8, 71.5, 69.7, 68.3, 62.0, 60.8, 57.2, 56.5, 52.5, 48.3, 48.1, 20.8, 17.7, 17.7. HRFABMS calculated for C₂₇H₄₃NO₁₇ (M+Na) 676.2432, found 676.2429.

Methyl 3,4,6-tri-*O*-acetyl-2-deoxy-2-methoxycarbonylamino- β -D-glucopyranosyl-(1 \rightarrow 4)-methyl-(2'R,3'R)-2,3-*O*-(2',3'-dimethoxybutane-2',3'-diyl)- β -D-glucopyranosiduronate (12a). A solution of 5 % NaOCl (3.8 mL) and saturated NaHCO₃ (2.8 mL) was added dropwise to a solution of 24 (75 mg, 0.1 mmol), tetrabutylammonium bromide (2 mg, 0.006 mmol), sodium bromide (2 mg, 0.02 mmol), and TEMPO (1 mg, 0.006 mmol) in CH₂Cl₂ (6 mL) and H₂O (1 mL) at 0 °C.⁶ After stirring at 0 °C for 1 hour, the reaction was quenched with MeOH (5 mL) and extracted with CHCl₃ (1x). The aqueous layer was acidified with 1M HCl and extracted once again with CHCl₃ (5x). The organic extract was dried over MgSO₄ and concentrated *in vacuo* to afford the crude acid as a yellow syrup.

A solution of diazald (520 mg, 2.4 mmol) in Et₂O (5 mL) was added dropwise to a solution of KOH (500 mg, 8.9 mmol) in H₂O (0.8 mL) and EtOH (1 mL). The resulting diazomethane was distilled into a solution of the acid in CH₂Cl₂ (10 mL) and Et₂O (10 mL). Excess diazomethane was allowed to evaporate and the methyl ester was purified by flash chromatography (25 % hexanes in ethyl acetate) to afford **12a** (52 mg, 69 %) as a clear syrup. ¹H NMR (CDCl₃, 500 MHz) δ 5.07 (2H, m), 4.73 (1H, bd, *J* = 7.8 Hz), 4.64 (1H, d, *J* = 8.2 Hz), 4.42 (1H, d, *J* = 8.0 Hz), 4.26 (1H, <u>ABX</u>, J_{AB} = 12.1 Hz, J_{AX} = 3.5 Hz, J_{BX} = 2.4 Hz, v_a = 2131.8, v_b = 2055.3), 4.11 (1H, A<u>B</u>X, as above), 3.99 (1H, t, *J* = 9.2 Hz), 3.86 (1H, d, *J* = 9.2 Hz), 3.80 (1H, t, *J* = 9.9 Hz), 3.79 (3H, s), 3.63 (3H, s), 3.61 (1H, AB<u>X</u>, v_x = 1805.3), 3.52 (1H, dd, *J* = 10.2, 8.1 Hz), 3.51 (3H, s), 3.27 (3H, s), 3.24 (3H, s), 2.04 (3H, s), 1.99 (3H, s), 1.99 (3H, s), 1.29 (3H, s), 1.25 (3H, s). ¹³C NMR (CDCl₃, 125 MHz) δ 170.9, 169.6, 102.3, 102.2, 99.8, 99.7, 77.9, 74.8, 73.0, 71.8, 70.6, 69.2, 68.3, 62.1, 57.7, 57.4, 53.0, 52.4, 48.2, 20.8, 20.5, 17.7, 17.6. HRFABMS calculated for C₂₈H₄₃NO₁₈ (M+Na) 704.2381, found 704.2378.

Methyl 3,4,6-tri-*O*-acetyl-2-amino-2-deoxy- β -D-glucopyranosyl-(1 \rightarrow 4)methyl- $(2^{R}, 3^{R})$ -2,3-O- $(2^{\prime}, 3^{\prime})$ -dimethoxybutane- $2^{\prime}, 3^{\prime}$ -diyl)- β -Dglucopyranosiduronate (12b). MeSiCl₃ (49 μ l, 0.4 mmol) was added to a solution of **12a** (57 mg, 0.08 mmol) and Et₃N (58 μ l, 0.4 mmol) in dry THF (10 mL) at 60 °C. After stirring for 7 days, the reaction was quenched with H_2O (30 mL) and extracted with CH_2Cl_2 (3x). The aqueous layer was neutralized with saturated NaHCO₃, extracted with CH₂Cl₂ (3x), dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by flash chromatography (1 % Et₃N in ethyl acetate) to afford **12b** (35 mg, 67 %) as a white solid. ¹H NMR (CDCl₃, 500 MHz) δ 4.99 (1H, t, *J* = 9.6 Hz), 4.90 (1H, t, *J* = 10.1 Hz), 4.44 (1H, d, J = 8.0 Hz), 4.40 (1H, d, J = 8.1 Hz), 4.26 (1H, ABX, $J_{AB} = 12.3$ Hz, $J_{AX} =$ 3.8 Hz, $J_{BX} = 2.4$ Hz, $v_a = 2131.3$, $v_b = 2030.8$), 4.10 (1H, t, J = 9.2 Hz), 4.06 (1H, A<u>B</u>X, as above), 3.96 (d, 1H, J = 9.0 Hz), 3.82 (1H, t, J = 9.9 Hz), 3.77 (3H, s), 3.62 (1H, ABX, $v_x = 1810.3$), 3.56 (1H, dd, J = 10.1, 8.0 Hz), 3.50 (3H, s), 3.29 (3H, s), 3.25 (3H, s), 2.81 (1H, dd, J = 10.2, 8.0 Hz), 2.04 (3H, s), 2.03 (3H, s), 1.99 (3H, s), 1.29 (3H, s), 1.26 (3H, s). ¹³C NMR (CDCl₃, 125 MHz) δ170.9, 170.0, 168.8, 104.7, 102.1, 99.7, 76.8, 75.3, 75.3, 72.1, 70.9, 69.2, 68.6, 62.3, 57.3, 56.4, 53.0, 48.2, 20.8, 17.7. HRFABMS calculated for C₂₆H₄₁NO₁₆ (M+Na) 646.2320, found 646.2323.

glucopyranosiduronate (12c). Acetic anhydride (38 μl, 0.4 mmol) was added to a solution of 12b (25 mg, 0.04 mmol) in dry pyridine (1 mL). After stirring at room temperature for 12 hours, the reaction concentrated *in vacuo* and purified by flash chromatography (ethyl acetate) to afford 12c (28 mg, 100 %) as a white solid. ¹H NMR (CDCl₃, 500 MHz) δ 5.60 (1H, d, J = 9.4 Hz), 5.11 (1H, t, J = 9.8 Hz), 5.05 (1H, t, J = 10.3 Hz), 4.69 (1H, d, J = 8.4 Hz), 4.42 (1H, d, J = 7.9 Hz), 4.28 (1H, <u>ABX</u>, $J_{AB} = 12.2$ Hz, $J_{AX} = 3.5$ Hz, $J_{BX} = 2.4$ Hz, $v_a = 2142.3$, $v_b = 2041.3$), 4.08 (1H, A<u>BX</u>, as above), 3.98 (1H, m), 3.95 (1H, m), 3.91 (1H, t, J = 8.4 Hz), 3.81 (1H, dd, J = 10.1, 8.9 Hz), 3.79 (3H, s), 3.62 (1H, ABX, $v_x = 1810.3$), 3.52 (1H, dd, J = 9.8, 7.9 Hz), 3.51 (3H, s), 3.28 (3H, s), 3.24 (3H, s), 2.04 (3H, s), 2.04 (3H, s), 1.99 (3H, s), 1.99 (3H, s), 1.90 (3H, s), 1.29 (3H, s), 1.25 (3H, s). ¹³C NMR (CDCl₃, 125 MHz) δ 171.2, 170.9, 170.4, 169.5, 169.4, 102.0, 101.7, 99.8, 99.7, 77.7, 74.6, 73.5, 72.0, 71.0, 69.1, 68.1, 62.1, 57.4, 54.5, 53.0, 48.2, 23.4, 20.8, 17.7, 17.6 mp 176-177 °C HRFABMS calculated for C₂₈H₄₃NO₁₇ (M+Na) 688.2426, found 646.2429.

Methvl 2-deoxy-4,6-O-isopropylidene-2-methoxycarbonylamino- β -Dglucopyranoside (21). A catalytic amount of Na° was added to a solution of 8a (1.36 g, 3.60 mmol) in dry MeOH (20 mL). The reaction was allowed to stir at room temperature under nitrogen for three hours after which Dowex 50W-X8 cation exchange resin to neutralize the reaction mixture. The resin was filtered and the filtrate concentrated in *vacuo* to quantitatively afford the corresponding triol. A catalytic amount of *p*-TsOH• H₂O was added to a solution of the triol (0.903 g, 3.59 mmol), 2,2-dimethoxypropane (1.3 mL, 10.8 mmol) in dry CH₃CN (12 mL). The reaction was stirred at room temperature under nitrogen for 5 hours after which it was neutralized with triethylamine and concentrated in vacuo. The residue was purified by flash chromatography (4:1 ethyl acetate:hexanes) to afford **21** (586 mg, 56%) as a light yellow syrup. ¹H NMR (500 MHz, CD_3CN) δ 5.62 (1H, bs), 4.29 (1H, d, J = 8.4 Hz), 3.83 (1H, dd, J = 10.7, 5.4 Hz), 3.74 (1H, t, J = 10.4 Hz), 3.60 (3H, s), 3.53 (1H, t, J = 8.9 Hz), 3.48-3.42 (2H, m), 3.39 (3H,s),3.31 (1H, dt, J = 9.4, 8.5 Hz), 3.18 (1H, td, J = 10.1, 5.5 Hz), 1.47 (3H, s), 1.34 (3H, s). ¹³C NMR (125 MHz, CD₃CN) δ 158.4, 104.1, 100.6, 75.2, 73.3, 68.4, 63.1, 59.7, 57.5, 52.9, 29.8, 19.8. HRFABMS calculated for C₁₂H₂₁NO₇Na (M+Na) 314.1216, found 3141217.

Methyl 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl-(1 \rightarrow 3)-2-deoxy-4,6-Oisopropylidene-2-methoxycarbonylamino-*β*-D-glucopyranoside (13a). A solution of **21** (130 mg, 0.45 mmol) in CH₂Cl₂ (2 mL) was added dropwise via cannula to a mixture 1.0 mmol), 4 Å molecular sieves, of 4 (500 mg, and trimethylsilyl trifluoromethanesulfonate (4 µL, 0.02 mmol) in CH₂Cl₂ (3 mL) at -30 °C. The reaction was allowed to warm to room temperature over 12 hours, then quenched with Et₃N (10 µl), filtered through Celite[®], a concentrated *in vacuo*. The residue was purified by flash chromatography (33 % hexanes in ethyl acetate) to afford **13a** (160 mg, 58 %) as a white foam. ¹H NMR (500 MHz, CDCl₃) δ 5.18 (1H, bd, J = 7.1 Hz), 5.09 (1H, t, J = 9.2 Hz), 5.05 (1H, t, J = 9.5 Hz), 4.88 (1H, t, J = 8.0 Hz), 4.70 (1H, d, J = 7.8 Hz), 4.64 (1H, bs), 4.20 (1H, dd, J = 12.3, 4.3 Hz), 4.08 (1H, dd, J = 11.8, 2.6 Hz), 3.87 (1H, dd, J = 11.1, 5.7 Hz), 3.72 (1H, t, J = 10.4 Hz), 3.64 (1H, t, J = 9.2 Hz), 3.61 (3H, s), 3.58 (1H, m), 3.41 (3H, s), 3.23 (1H, td, J = 9.9, 5.4 Hz), 3.14 (1H, bs), 2.03 (3H, s), 1.97 (3H, s), 1.96 (3H, s), 1.93 (3H, s), 1.45 (3H, s), 1.33 (3H, s). ¹³C NMR (CDCl₃, 125 MHz) 170.8, 170.4, 169.5, 156.4, 100.1, 99.4, 73.2, 73.2, 71.9, 71.8, 68.3, 66.6, 62.2, 62.0, 57.6, 57.2, 29.2, 20.8, 20.7, 20.6, 19.1. HRFABMS calculated for C₂₆H₃₉NO₁₆Na(M+Na) 644.2169, found 644.2167.

Methyl 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl- $(1 \rightarrow 3)$ -2-amino-2-deoxy-**4,6-***O***-isopropylidene**- β -D-glucopyranoside (13b). MeSiCl₃ (47 µL, 0.40 mmol) was added to a solution of **13a** (50 mg, 0.08 mmol) and Et₃N (56 µL, 0.40 mmol) in dry THF (3.5 mL) at 60 °C. After 17 hours, the reaction was diluted with THF (10 mL), quenched with H_2O (20 mL), and extracted with CH_2Cl_2 (3x). The aqueous layer was neutralized with saturated NaHCO₃ and extracted with CH₂Cl₂ (3x), dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash chromatography (1 % Et₃N in ethyl acetate) to afford 13b (34.8 mg, 77 %) as a white foam. ¹H NMR (500 MHz, CDCl₃) δ 5.19 (1H, t, J = 9.5 Hz), 5.09 (1H, t, J = 9.8 Hz), 4.97 (1H, dd, J = 9.6, 8.2 Hz), 4.81 (1H, d, J = 8.2 Hz), 4.26 (1H, dd, J = 12.4, 4.2 Hz), 4.14 (1H, d, J = 7.9 Hz), 4.09 (1H, dd, J = 12.3, 2.5 Hz), 3.91 (1H, dd, J = 10.8, 5.3 Hz), 3.79 (1H, t, J = 10.6 Hz), 3.76 (1H, t, J = 9.2 Hz), 3.62 (1H, ddd, J = 10.0, 4.2, 2.5 Hz), 3.51 (1H, t, J = 9.2 Hz), 3.49(3H, s), 3.23 (1H, td, J = 10.1, 5.4 Hz), 2.86 (1H, dd, J = 9.4, 7.9 Hz), 2.08 (3H, s), 2.07(3H, s), 2.00 (3H, s), 1.99 (3H, s), 1.51 (3H, s), 1.38 (3H, s). ¹³C NMR (CDCl₃, 125 MHz) δ 170.9, 170.5, 170.2, 105.1, 100.9, 99.6, 83.0, 73.5, 72.9, 72.3, 72.2, 68.4, 67.4, 62.3, 62.2, 57.5, 56.6, 29.4, 21.1, 20.8, 14.4. HRFABMS calculated for C₂₄H₃₇NO₁₄Na (M+Na) 586.2112, found 586.2115.

Methvl 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl- $(1 \rightarrow 3)$ -2-acetamido-2deoxy-4,6-O-isopropylidene-*β*-D-glucopyranoside (13c). Acetic anhydride (109 µl, 1.06mmol) was added to a solution 13b (30 mg, 0.053mmol) in dry pyridine (1 mL). After stirring at room temperature for 4 hours, the reaction was concentrated in vacuo and purified by flash chromatography (ethyl acetate) to afford **13c** (30.8 mg, 96 %) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 5.92 (1H, d, J = 7.0 Hz), 5.15 (1H, t, J = 9.5 Hz), 5.08 (1H, t, J = 9.7 Hz), 5.01 (1H, d, J = 8.2 Hz), 4.93 (1H, t, J = 8.0 Hz), 4.89 (1H, d, J = 7.8 Hz), 4.49 (1H, t, J = 9.3 Hz), 4.23 (1H, <u>A</u>BX, J_{AB} = 12.3 Hz, J_{AX} = 4.7 Hz, J_{BX} = 2.5 Hz, $v_a = 2116.8$, $v_b = 2072.8$), 4.15 (1H, ABX, as above), 3.92 (1H, dd, J = 10.9, 5.3 Hz), 3.76 (1H, t, J = 10.7 Hz), 3.70 (1H, t, J = 9.3 Hz), 3.63 (1H, ABX, $v_x = 1815.5$), 3.46 (3H, s), 3.35 (1H, td, J = 10.3, 5.6 Hz), 3.03 (1H, m), 2.07 (3H, s), 2.05 (3H, s), 2.01 (3H, s), 1.99 (3H, s), 1.97 (3H, s), 1.50 (3H, s), 1.39 (3H, s); ¹³C NMR (CDCl₃, 125 MHz) δ 171.0, 170.9, 170.5, 169.8, 169.6, 100.5, 99.5, 99.2, 76.6, 73.7, 73.2, 72.2, 72.1, 68.5, 66.6, 62.6, 62.3, 58.4, 57.4, 29.4, 21.0, 21.0, 20.8, 19.2. mp 201-202 °C HRFABMS calculated for C₂₆H₃₉NO₁₅Na (M+Na) 628.2217, found 628.2217.

Methyl 3,4,6-tri-O-acetyl-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)- β -D-glucopyranosyl- $(1 \rightarrow 3)$ -2-deoxy-4,6-*O*-isopropylidene-2-methoxycarbonylamino- β -**D-glucopyranoside** (14a). TMSOTf (10 μ L, 0.061 mmol) was added to a solution of 6^7 (763 mg, 1.22 mmol) and 4 Å molecular sieves (700 mg) in dry CH_2Cl_2 (1.5 mL) at -30 °C under Argon. After 10 minutes a solution of **21** (113 mg, 0.386 mmol) in (1 mL) was added dropwise via cannula. The flask containing 21 was rinsed with an additional 1 mL of dry CH₂Cl₂ and cannulated into the reaction mixture. The reaction was stirred for 30 minutes and allowed to warm to room temperature. After 2 hours, triethylamine was added and the reaction filtered through Celite[®] and concentrated in vacuo. The residue was purified by flash chromatography to afford **14a** (280 mg, 96%) as a white solid. 1 H NMR (500 MHz, CDCl₃) δ 5.9 (1H, d, J = 9.5 Hz), 5.50 (1H, bs), 5.15 (1H, t, J = 9.8Hz), 5.00 (1H, AB_q, $J_{AB} = 12.5$ Hz, $v_a = 2486.5$, $v_b = 2475.6$), 4.94 (1H, AB_q, $J_{AB} = 12.5$ Hz, $v_a = 2486.5$, $v_b = 2475.6$), 4.80 (1H, d, J = 8.6 Hz), 4.50 (1H, d, J = 12.5 Hz), 4.33 (1H, d, J = 8.5 Hz), 4.20 (1H, dd, J = 12.3, 4.2 Hz), 4.06 (1H, dd, J = 12.6, 2.6 Hz), 3.83 (1H, dd, J = 10.7, 5.5 Hz), 3.74 (1H, t, J = 10.5 Hz), 3.73-3.66 (3H, m), 3.59 (3H, s), 3.50 (1H, m), 3.42 (1H, m), 3.73 (3H, s), 3.19 (1H, td, *J* = 9.8, 5.2 Hz), 2.01 (3H, s), 1.94 (3H, s), 1.88 (3H, s), 1.49 (3H,s), 1.34 (3H, s). ¹³C NMR (CDCl₃, 125 MHz) δ 171.8, 170.9, 158.0, 155.6, 103.9, 101.3, 100.6, 96.1, 75.2, 74.4, 73.6, 72.9, 70.0, 67.9, 63.5, 62.9, 57.7, 56.6, 52.9, 30.0, 21.4, 21.3, 21.2. HRFABMS calculated for C₂₇H₃₉Cl₃N₂O₁₆Na (M+Na) 775.1263, found, 775.1260.

Methyl 3,4,6-tri-*O*-acetyl-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)-β-D-glucopyranosyl-(1+3)-2-amino-2-deoxy-4,6-*O*-isopropylidene-β-Dglucopyranoside (14b). MeSiCl₃ (53 µl, 0.45 mmol) was added to a solution of 14a (67.5 mg, 0.090 mmol) and Et₃N (62 µl, 0.45 mmol) in dry THF (4.5 mL) at 60 °C. After 48 hours, the reaction was diluted with THF (10 mL), quenched with H₂O (10 mL), and extracted with CH₂Cl₂ (3x). The aqueous layer was neutralized with saturated NaHCO₃ and extracted with CH₂Cl₂ (3x), dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by flash chromatography (4:1 ethyl acetate:hexanes, 1 % Et₃N) to afford 14b (44 mg, 70 %) as a transparent syrup. ¹H NMR (500 MHz, CDCl₃) δ 5.94 (1H, t, *J* = 7.3 Hz), 5.30 (1H, t, *J* = 8.7 Hz), 5.08 (1H, t, *J* = 9.8 Hz), 4.84 (1H, AB_q, *J*_{AB} = 13.0 Hz, $v_a = 2362.3$, $v_b = 2349.8$), 4.83 (1H, d, *J* = 8.2 Hz), 4.58 (1H, AB_q, *J*_{AB} = 13.0 Hz, $v_a = 2362.3$, $v_b = 2349.8$), 4.28 (1H, dd, *J* = 11.0, 5.4 Hz), 3.80 (1H, t, *J* = 10.6 Hz), 3.74 (1H, t, *J* = 9.3 Hz), 3.69-3.64 (2H, m), 3.55 (1H, t, *J* = 9.3 Hz), 3.51 (3H, s), 3.24 (1H, dt, *J* = 10.1, 5.4 Hz), 2.83 (1H, dd, *J* = 9.4, 8.2 Hz), 2.08 (3H, s), 2.03 (3H, s), 2.02 (3H, s), 1.53 (3H, s), 1.41 (3H, s). 13 C NMR (CDCl₃, 125 MHz) δ 170.8, 169.6, 105.5, 100.9, 99.8, 82.2, 74.6, 73.0, 72.4, 72.3, 68.7, 67.4, 62.4, 62.2, 57.5, 57.3, 56.7, 29.3, 20.9, 20.8. HRFABMS calculated for $C_{25}H_{37}Cl_3N_2O_{14}Na$ (M+Na) 717.1208, found, 717.1206.

Methyl 3,4,6-tri-*O*-acetyl-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)- β -D-glucopyranosyl-(1 \rightarrow 3)-2-acetamido-2-deoxy-4,6-*O*-isopropylidene- β -D-

glucopyranoside (14c). Acetic anhydride (12 mL, 0.126 mmol) was added to a solution of 14b (44 mg, 0.063 mmol) in 1:1 dry pyridine:CH₂Cl₂ (1 mL) at room temperature. After 4 hours the reaction was quenched with MeOH and concentrated *in vacuo*. The residue was purified by flash chromatography (2:1 ethyl acteate:hexanes) to afford 14c (45 mg, 96%) as a transparent syrup. ¹H NMR (500 MHz, CDCl₃) δ 6.00 (1H, bd, J = 6.6 Hz), 5.62 (1H, bd, J = 6.5 Hz), 5.54 (1H, bt, J = 9.6 Hz), 5.05 (1H, t, J = 10.0 Hz), 4.98 (1H, bd, J = 7.8 Hz), 4.76-4.66 (2H, m), 4.29 (1H, AB_q, $J_{AB} = 13.0$ Hz, $v_a = 2140.5$, $v_b = 2091.6$), 4.19 (1H, m), 4.29 (1H, AB_q, $J_{AB} = 13.0$ Hz, $v_a = 2140.5$, $v_b = 2091.6$), 3.94 (1H, dd, J = 10.9, 5.4 Hz), 3.79 (1H, t, J = 10.8 Hz), 3.71 (1H, bt, J = 8.5 Hz), 3.47 (3H, s), 3.34-3.37 (2H, m), 3.32 (1H, dt, J = 10.1, 5.6 Hz), 2.11 (3H, s), 2.03 (3H, s), 2.02 (3H, s), 1.99 (3H, s), 1.53 (3H, s), 1.41 (3H, s). ¹³C NMR (CDCl₃, 125 MHz) δ 171.1, 170.5, 169.8, 154.2, 101.8, 99.9, 98.6, 76.2, 74.6, 73.1, 72.4, 71.6, 68.8, 67.0, 62.3, 57.3, 57.2, 56.3, 29.2, 21.1, 20.9. HRFABMS calculated for C₂₇H₃₉Cl₃N₂O₁₅Na (M+Na) 759.1314, found 759.1315.

Methyl 3,4,6-tri-*O*-acetyl-2-azido-2-deoxy- α -D-mannopyranosyl-(1 \rightarrow 3)-2deoxy-4,6-*O*-isopropylidene-2-methoxycarbonylamino- β -D-glucopyranoside (15a). A solution of 21 (129 mg, 0.44 mmol) in dry CH₂Cl₂ (2 mL) was added dropwise via cannula to a flask containing TMSOTf (5 µL, 0.03 mmol), 7 (250 mg, 0.53 mmol), and 4 Å molecular sieves in dry CH₂Cl₂ (3 mL) at -30 °C. After 16 hours at room temperature, the reaction was quenched with Et₃N (10 µl), filtered through a Celite[®] and concentrated *in vacuo*. The residue was purified by flash chromatography (1:1 ethyl acetate:hexanes) to afford 15a (80 mg, 30 %) as a clear syrup. ¹H NMR (500 MHz, CDCl₃) δ 5.28 (1H, t, *J* = 9.8 Hz), 5.24 (1H, d, *J* = 3.6 Hz), 5.22 (1H, m), 5.14 (1H, bd, *J* = 7.3 Hz), 4.20 (1H, dd, *J* = 12.4, 3.6 Hz), 4.01 (1H, m), 3.95 (1H, dt, *J* = 9.4, 3.0 Hz), 3.91 (1H, dd, *J* = 10.9, 5.3 Hz), 3.76 (1H, t, *J* = 10.6 Hz), 3.66 (3H, s), 3.65 (1H, t, *J* = 9.3 Hz), 3.46 (3H, s), 3.83 (1H, q, *J* = 9.0 Hz), 3.25 (1H, td, *J* = 10.0, 5.5 Hz), 2.08 (3H, s), 2.06 (3H, s), 2.00 (3H, s), 1.47 (3H, s), 1.35 (3H, s). ¹³C NMR (CDCl₃, 125 MHz) δ 171.2, 170.1, 169.6, 156.5, 99.7, 98.9, 77.5, 75.0, 70.8, 68.8, 66.6, 66.0, 62.3, 62.1, 61.8, 57.3, 56.9, 52.5, 29.2, 20.9, 20.8, 20.7, 19.3. ¹H NMR (500 MHz, CD₃CN) δ 5.81 (1H, d, *J* = 9.8 Hz), 5.19 (3H, m), 4.38 (1H, d, *J* = 8.1 Hz), 4.14 (1H, <u>A</u>BX, *J*_{AB} = 12.4 Hz, *J*_{AX} = 3.5 Hz, *J*_{BX} = 2.2 Hz, v_a = 2068.8, v_b = 2033.3), 4.13 (1H, m), 4.07 (1H, A<u>B</u>X, as above), 3.89 (1H, AB<u>X</u>, v_x = 1945.1), 3.86 (1H, dd, *J* = 10.9, 5.7 Hz), 3.77 (1H, t, *J* = 9.2 Hz), 3.76 (1H, t, *J* = 10.6 Hz), 3.70 (1H, t, *J* = 9.8 Hz), 3.60 (3H, s), 3.47 (1H, q, *J* = 9.2 Hz), 3.41 (3H, s), 3.25 (1H, td, *J* = 10.0, 5.7 Hz), 2.03 (3H, s), 2.02 (3H, s), 1.98 (3H, s), 1.50 (3H, s), 1.34 (3H, s). ¹³C NMR (CD₃CN, 125 MHz) δ 171.8, 171.1, 171.0, 158.1, 103.7, 100.7, 99.2, 78.3, 76.2, 71.6, 69.9, 67.7, 66.6, 63.0, 62.8, 62.8, 57.7, 57.4, 53.1, 29.8, 21.3, 21.2, 19.9. HRFABMS calculated for C₂₄H₃₆N₄O₁₄ (M+), found.

Methyl 3,4,6-tri-*O*-acetyl-2-azido-2-deoxy- α -D-mannopyranosyl- $(1 \rightarrow 3)$ -2amino-2-deoxy-4,6-*O*-isopropylidene- β -D-glucopyranoside (15b). MeSiCl₃ (35 μ l, 0.30 mmol) was added to a solution of 15a (36 mg, 0.06 mmol) and Et₃N (42 μ l, 0.30 mmol) in dry THF (3 mL). The reaction was capped and heated to 60 °C. After stirring for 50 hours, the reaction was diluted with THF (20 mL), quenched with H₂O (10 mL) and extracted with CH_2Cl_2 (3x). The aqueous layer was neutralized with saturated NaHCO₃ and extracted with CH_2Cl_2 (3x), dried over Na₂SO₄, and concentrated *in vac*uo. The residue was purified by flash chromatography (ethyl acetate, 1 % Et₃N) to afford 15b (26 mg, 81 %) as a transparent syrup. ¹H NMR (500 MHz, CDCl₃) δ 5.33 (1H, dd, J = 9.8, 3.6 Hz), 5.27 (1H, t, J = 9.6 Hz), 5.25 (1H, d, J = 1.9 Hz), 4.26 (1H, dd, J = 5.0, 1.9Hz), 4.23 (1H, dd, J = 11.8, 4.8 Hz), 4.13 (1H, d, J = 7.9 Hz), 4.08 (1H, m), 4.04 (1H, dd, *J* = 3.9, 2.0 Hz), 3.92 (1H, dd, *J* = 10.9, 5.6 Hz), 3.78 (1H, t, *J* = 10.6 Hz), 3.66 (1H, t, *J* = 9.3 Hz), 3.54 (1H, t, J = 9.4 Hz), 3.52 (3H, s), 3.25 (1H, td, J = 10.1, 5.3 Hz), 2.78 (1H, dd, J = 9.6, 7.9 Hz), 2.09 (3H, s), 2.08 (3H, s), 2.03 (3H, s), 1.49 (3H, s), 1.37 (3H, s). ¹³C NMR (CDCl₃, 125 MHz) δ 170.9, 170.3, 169.7, 105.9, 99.8, 99.1, 81.1, 74.6, 70.8, 69.2, 67.2, 66.1, 62.5, 62.2, 62.0, 57.6, 56.8, 29.3, 21.0, 20.9, 20.8, 19.4. HRFABMS calculated for C₂₂H₃₄N₄O₁₂Na (M+Na) 569.2071, found 569.2071.

Methyl 3,4,6-tri-*O*-acetyl-2-azido-2-deoxy-α-D-mannopyranosyl-(1→3)-2acetamido-2-deoxy-4,6-*O*-isopropylidene-β-D-glucopyranoside (15c). Acetic anhydride (43 µl, 0.46 mmol) was added to a solution of 15b (25 mg, 0.046mmol) in dry pyridine (2 mL). After stirring at room temperature for 18 hours, the reaction was concentrated *in vacuo* and purified by flash chromatography (ethyl acetate) to afford **15c** (27 mg, 100 %) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 5.89 (1H, d, J = 8.4 Hz), 5.27 (2H, m), 5.23 (1H, d, J = 1.6 Hz), 4.66 (1H, d, J = 8.4 Hz), 4.25 (1H, dd, J = 12.1, 4.2 Hz), 4.10 (1H, t, J = 9.6 Hz), 4.06 (1H, dd, J = 4.2, 2.4 Hz), 4.02 (1H, m), 3.93 (1H, dd, J = 11.0, 5.6 Hz), 3.78 (1H, t, J = 10.5 Hz), 3.66 (1H, t, J = 9.4 Hz), 3.50 (1H, m), 3.47 (3H, s), 3.31 (1H, td, J = 10.0, 5.2 Hz), 2.11 (3H, s), 2.08 (3H, s), 2.03 (3H, s), 1.99 (3H, s), 1.50 (3H, s), 1.38 (3H, s). ¹³C NMR (CDCl₃, 125 MHz) δ 170.5, 169.7, 101.8, 99.8, 98.9, 77.2, 77.0, 75.2, 70.8, 68.7, 66.7, 62.8, 61.8, 57.2, 56.3, 29.3, 23.6, 21.1, 20.9, 20.8, 20.6. mp 159-161 °C. HRFABMS calculated for C₂₄H₃₆N₄O₁₃Na (M+Na) 611.2177, found 611.2179.

Methvl 3,4,6-tri-*O*-acetyl-2-amino-2-deoxy- β -D-glucopyranosyl- $(1 \rightarrow 3)$ -2deoxy-4,6-O-isopropylidene-2-methoxycarbonylamino- β -D-glucopyranoside (16b). Freshly activated zinc dust (400 mg) was added to a solution of **14a** in acetic acid (5 mL) and the reaction was allowed to stir at room temperature. After 4 hours the reaction was filtered through Celite[®] and rinsed with toluene (20 mL) then concentrated. The filtrate was azeotroped with toluene (2 x 25 mL) and concentrated in vacuo. The residue was purified by flash chromatography (ethyl acetate) to afford 16b (56 mg, 61%) as a white foam. ¹H NMR (500 MHz, CD₃CN) δ 5.78 (1H, bs), 4.89 (2H, m), 4.41 (1H, d, J = 8.0Hz), 4.37 (1H, d, J = 8.5 Hz), 4.18 (1H, dd, J = 12.3, 4.2 Hz), 4.06 (1H, dd, J = 12.0, 2.4 Hz), 3.84 (1H, dd, J = 10.8, 5.4 Hz), 3.78 (1H, t, J = 9.4 Hz), 3.75 (1H, t, J = 10.3 Hz), 3.70 (1H, t, J = 9.5 Hz), 3.68 (1H, m), 3.57 (3H, s), 3.43 (1H, dt, J = 9.2, 8.5 Hz), 3.40 (3H, s), 3.21 (1H, td, J = 10.1, 5.4 Hz), 2.73 (1H, m), 2.01 (3H, s), 1.98 (3H, s), 1.95 (3H, s), 1.47 (3H, s), 1.33 (1H, s). ¹³C NMR (CD₃CN, 125 MHz) δ 171.8, 171.7, 171.0, 158.2, 104.3, 104.2, 100.6, 79.9, 76.3, 73.7, 72.9, 70.1, 68.2, 63.6, 63.0, 58.2, 57.6, 57.5, 52.9, 29.8, 21.4, 21.3. HRFABMS calculated for C₂₄H₃₈N₂O₁₄Na (M+Na) 601.2221, found 601.2218.

Methyl 3,4,6-tri-*O*-acetyl-2-amino-2-deoxy- α -D-mannopyranosyl-(1 \rightarrow 3)-2deoxy-4,6-*O*-isopropylidene-2-methoxycarbonylamino- β -D-glucopyranoside (17b). A catalytic amount of Raney nickel (50 % slurry in H₂O) was added to a solution of 15a (31 mg, 0.051 mmol) in MeOH (2 mL) and ethyl acetate (0.5 mL). The reaction mixture was stirred vigorously at room temperature, under a H₂ atmosphere of 56 psi. After 4 hours, the reaction mixture was filtered through Celite[®] and concentrated *in vacuo* to afford the amine (29 mg, 100 %) as a white foam. ¹H NMR (500 MHz, CDCl₃) δ 5.27 (1H, t, *J* = 9.9 Hz), 5.18 (1H, dd, *J* = 9.9, 3.9 Hz), 5.12 (1H, bs), 4.21 (1H, dd, *J* = 12.7, 3. 9 Hz), 4.02 (2H, m), 3.92 (1H, dd, *J* = 11.2, 5.8 Hz), 3.77 (1H, t, *J* = 10.5 Hz), 3.68 (3H, s), 3.66 (1H, t, *J* = 9.4 Hz), 3.48 (3H, s), 3.36 (1H, m), 3.33 (1H, dd, *J* = 3.6, 1.5 Hz), 3.28 (1H, td, *J* = 9.7, 5.1 Hz), 2.09 (3H, s), 2.05 (3H, s), 2.00 (3H, s), 1.46 (3H, s), 1.36 (3H, s). ¹³C NMR (CDCl₃, 125 MHz) δ 171.2, 170.0, 168.7, 105.7, 99.6, 75.1, 71.8, 68.5, 68.2, 66.7, 66.4, 62.7, 62.2, 57.4, 57.2, 53.2, 29.2, 21.1, 21.0, 20.9, 19.3. HRFABMS calculated for C₂₄H₃₈N₂O₁₄Na (M+Na) 601.2221, found 601.2215.

⁽¹⁾ Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.

⁽²⁾ Lemieux, R.U.; Ratcliffe, R.M. Can. J. Chem. 1979, 57, 1244.

⁽³⁾ Ziegler, T.; Eckhardt, E.; Birault, V. J. Org. Chem. 1993, 58, 1090.

⁽⁴⁾ Johansson, R.; Samuelsson, B. J. Chem. Soc. Perkin Trans. I 1984, 2371.

⁽⁵⁾ Montchamp, J.-L; Tian, F.; Hart, M. E.; Frost, J. W. J. Org. Chem. 1996, 61, 3897.

⁽⁶⁾ Garegg, P. J.; Oscarson, S.; Tedebark, U. J. Carbohydr. Chem. 1998, 17, 587.

⁽⁷⁾ Dullenkopf, W.; Castro-Palomino, J. C.; Manzoni, L.; Schmidt, R. R. *Carbohydr. Res.* **1996**, 296, 135.